3.6.27 \(\int \frac {x^2 \sqrt {d+e x}}{a+b x+c x^2} \, dx\) [527]

Optimal. Leaf size=316 \[ -\frac {2 b \sqrt {d+e x}}{c^2}+\frac {2 (d+e x)^{3/2}}{3 c e}+\frac {\sqrt {2} \left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {\sqrt {2} \left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \]

[Out]

2/3*(e*x+d)^(3/2)/c/e-2*b*(e*x+d)^(1/2)/c^2+arctanh(2^(1/2)*c^(1/2)*(e*x+d)^(1/2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/
2)))^(1/2))*2^(1/2)*(b*c*d-b^2*e+a*c*e+(-3*a*b*c*e+2*a*c^2*d+b^3*e-b^2*c*d)/(-4*a*c+b^2)^(1/2))/c^(5/2)/(2*c*d
-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)+arctanh(2^(1/2)*c^(1/2)*(e*x+d)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2))
*2^(1/2)*(b*c*d-b^2*e+a*c*e+(3*a*b*c*e-2*a*c^2*d-b^3*e+b^2*c*d)/(-4*a*c+b^2)^(1/2))/c^(5/2)/(2*c*d-e*(b+(-4*a*
c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 2.19, antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {911, 1301, 1180, 214} \begin {gather*} \frac {\sqrt {2} \left (-\frac {3 a b c e-2 a c^2 d+b^3 (-e)+b^2 c d}{\sqrt {b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{c^{5/2} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}+\frac {\sqrt {2} \left (\frac {3 a b c e-2 a c^2 d+b^3 (-e)+b^2 c d}{\sqrt {b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}\right )}{c^{5/2} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {2 b \sqrt {d+e x}}{c^2}+\frac {2 (d+e x)^{3/2}}{3 c e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[d + e*x])/(a + b*x + c*x^2),x]

[Out]

(-2*b*Sqrt[d + e*x])/c^2 + (2*(d + e*x)^(3/2))/(3*c*e) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*
d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 -
 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(b*c*d - b^2*e + a*c*e + (b^2*c*d -
 2*a*c^2*d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + S
qrt[b^2 - 4*a*c])*e]])/(c^(5/2)*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 911

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^2 \sqrt {d+e x}}{a+b x+c x^2} \, dx &=\frac {2 \text {Subst}\left (\int \frac {x^2 \left (-\frac {d}{e}+\frac {x^2}{e}\right )^2}{\frac {c d^2-b d e+a e^2}{e^2}-\frac {(2 c d-b e) x^2}{e^2}+\frac {c x^4}{e^2}} \, dx,x,\sqrt {d+e x}\right )}{e}\\ &=\frac {2 \text {Subst}\left (\int \left (-\frac {b e}{c^2}+\frac {x^2}{c}+\frac {b \left (c d^2-b d e+a e^2\right )-\left (b c d-b^2 e+a c e\right ) x^2}{c^2 e \left (\frac {c d^2-b d e+a e^2}{e^2}-\frac {(2 c d-b e) x^2}{e^2}+\frac {c x^4}{e^2}\right )}\right ) \, dx,x,\sqrt {d+e x}\right )}{e}\\ &=-\frac {2 b \sqrt {d+e x}}{c^2}+\frac {2 (d+e x)^{3/2}}{3 c e}+\frac {2 \text {Subst}\left (\int \frac {b \left (c d^2-b d e+a e^2\right )+\left (-b c d+b^2 e-a c e\right ) x^2}{\frac {c d^2-b d e+a e^2}{e^2}-\frac {(2 c d-b e) x^2}{e^2}+\frac {c x^4}{e^2}} \, dx,x,\sqrt {d+e x}\right )}{c^2 e^2}\\ &=-\frac {2 b \sqrt {d+e x}}{c^2}+\frac {2 (d+e x)^{3/2}}{3 c e}-\frac {\left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{-\frac {\sqrt {b^2-4 a c}}{2 e}-\frac {2 c d-b e}{2 e^2}+\frac {c x^2}{e^2}} \, dx,x,\sqrt {d+e x}\right )}{c^2 e^2}-\frac {\left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {b^2-4 a c}}{2 e}-\frac {2 c d-b e}{2 e^2}+\frac {c x^2}{e^2}} \, dx,x,\sqrt {d+e x}\right )}{c^2 e^2}\\ &=-\frac {2 b \sqrt {d+e x}}{c^2}+\frac {2 (d+e x)^{3/2}}{3 c e}+\frac {\sqrt {2} \left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {\sqrt {2} \left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{5/2} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.10, size = 375, normalized size = 1.19 \begin {gather*} \frac {\frac {2 \sqrt {c} \sqrt {d+e x} (-3 b e+c (d+e x))}{e}+\frac {3 \sqrt {2} \left (-b^3 e+b c \left (-\sqrt {b^2-4 a c} d+3 a e\right )+b^2 \left (c d+\sqrt {b^2-4 a c} e\right )-a c \left (2 c d+\sqrt {b^2-4 a c} e\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+b e-\sqrt {b^2-4 a c} e}}\right )}{\sqrt {b^2-4 a c} \sqrt {-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {3 \sqrt {2} \left (b^3 e-b c \left (\sqrt {b^2-4 a c} d+3 a e\right )+a c \left (2 c d-\sqrt {b^2-4 a c} e\right )+b^2 \left (-c d+\sqrt {b^2-4 a c} e\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {b^2-4 a c} \sqrt {-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}}{3 c^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[d + e*x])/(a + b*x + c*x^2),x]

[Out]

((2*Sqrt[c]*Sqrt[d + e*x]*(-3*b*e + c*(d + e*x)))/e + (3*Sqrt[2]*(-(b^3*e) + b*c*(-(Sqrt[b^2 - 4*a*c]*d) + 3*a
*e) + b^2*(c*d + Sqrt[b^2 - 4*a*c]*e) - a*c*(2*c*d + Sqrt[b^2 - 4*a*c]*e))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*
x])/Sqrt[-2*c*d + b*e - Sqrt[b^2 - 4*a*c]*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-2*c*d + (b - Sqrt[b^2 - 4*a*c])*e]) +
(3*Sqrt[2]*(b^3*e - b*c*(Sqrt[b^2 - 4*a*c]*d + 3*a*e) + a*c*(2*c*d - Sqrt[b^2 - 4*a*c]*e) + b^2*(-(c*d) + Sqrt
[b^2 - 4*a*c]*e))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2
- 4*a*c]*Sqrt[-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e]))/(3*c^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 430, normalized size = 1.36

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {\left (e x +d \right )^{\frac {3}{2}} c}{3}+b e \sqrt {e x +d}\right )}{c^{2}}+\frac {8 e \left (\frac {\left (-3 a b \,e^{2} c +2 a \,c^{2} d e +b^{3} e^{2}-b^{2} d e c -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a c e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b^{2} e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b c d \right ) \sqrt {2}\, \arctan \left (\frac {c \sqrt {e x +d}\, \sqrt {2}}{\sqrt {\left (e b -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (e b -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}-\frac {\left (3 a b \,e^{2} c -2 a \,c^{2} d e -b^{3} e^{2}+b^{2} d e c -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a c e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b^{2} e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b c d \right ) \sqrt {2}\, \arctanh \left (\frac {c \sqrt {e x +d}\, \sqrt {2}}{\sqrt {\left (-e b +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-e b +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c}}{e}\) \(430\)
default \(\frac {-\frac {2 \left (-\frac {\left (e x +d \right )^{\frac {3}{2}} c}{3}+b e \sqrt {e x +d}\right )}{c^{2}}+\frac {8 e \left (\frac {\left (-3 a b \,e^{2} c +2 a \,c^{2} d e +b^{3} e^{2}-b^{2} d e c -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a c e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b^{2} e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b c d \right ) \sqrt {2}\, \arctan \left (\frac {c \sqrt {e x +d}\, \sqrt {2}}{\sqrt {\left (e b -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (e b -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}-\frac {\left (3 a b \,e^{2} c -2 a \,c^{2} d e -b^{3} e^{2}+b^{2} d e c -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a c e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b^{2} e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b c d \right ) \sqrt {2}\, \arctanh \left (\frac {c \sqrt {e x +d}\, \sqrt {2}}{\sqrt {\left (-e b +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-e b +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c}}{e}\) \(430\)
risch \(\text {Expression too large to display}\) \(1330\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

2/e*(-1/c^2*(-1/3*(e*x+d)^(3/2)*c+b*e*(e*x+d)^(1/2))+4/c*e*(1/8*(-3*a*b*e^2*c+2*a*c^2*d*e+b^3*e^2-b^2*d*e*c-(-
e^2*(4*a*c-b^2))^(1/2)*a*c*e+(-e^2*(4*a*c-b^2))^(1/2)*b^2*e-(-e^2*(4*a*c-b^2))^(1/2)*b*c*d)/c/(-e^2*(4*a*c-b^2
))^(1/2)*2^(1/2)/((e*b-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan(c*(e*x+d)^(1/2)*2^(1/2)/((e*b-2*c*d+(-e
^2*(4*a*c-b^2))^(1/2))*c)^(1/2))-1/8*(3*a*b*e^2*c-2*a*c^2*d*e-b^3*e^2+b^2*d*e*c-(-e^2*(4*a*c-b^2))^(1/2)*a*c*e
+(-e^2*(4*a*c-b^2))^(1/2)*b^2*e-(-e^2*(4*a*c-b^2))^(1/2)*b*c*d)/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-e*b+2*c*
d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh(c*(e*x+d)^(1/2)*2^(1/2)/((-e*b+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)
^(1/2))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

integrate(sqrt(x*e + d)*x^2/(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2992 vs. \(2 (285) = 570\).
time = 2.70, size = 2992, normalized size = 9.47 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(2)*c^2*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b^2*c^5 -
4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*
c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5
- 4*a*c^6))*e*log(sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3
*b*c^3)*e - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c -
 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)
*e^2)/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e +
(b^2*c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3
 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11))
)/(b^2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(x*e + d))
- 3*sqrt(2)*c^2*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b^2*c^5 - 4*a
*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4
)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4
*a*c^6))*e*log(-sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b
*c^3)*e - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5
*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e
^2)/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e + (b
^2*c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 -
 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/
(b^2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(x*e + d)) +
3*sqrt(2)*c^2*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^5 - 4*a*c
^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*
d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a
*c^6))*e*log(sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^
3)*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*
b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)
/(b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*
c^5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*
a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^
2*c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(x*e + d)) - 3*s
qrt(2)*c^2*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^5 - 4*a*c^6)
*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e
 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^
6))*e*log(-sqrt(2)*((b^6*c - 6*a*b^4*c^2 + 8*a^2*b^2*c^3)*d - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^3)
*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^
5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(
b^2*c^10 - 4*a*c^11)))*sqrt(((b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*d - (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*e - (b^2*c^
5 - 4*a*c^6)*sqrt(((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4)*d^2 - 2*(b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^
3*b*c^4)*d*e + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*e^2)/(b^2*c^10 - 4*a*c^11)))/(b^2*
c^5 - 4*a*c^6)) - 4*((a^2*b^3*c - 2*a^3*b*c^2)*d - (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*e)*sqrt(x*e + d)) + 4*(c*
d + (c*x - 3*b)*e)*sqrt(x*e + d))*e^(-1)/c^2

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x+d)**(1/2)/(c*x**2+b*x+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 868 vs. \(2 (285) = 570\).
time = 2.21, size = 868, normalized size = 2.75 \begin {gather*} -\frac {{\left (\sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left ({\left (b^{3} c - 4 \, a b c^{2}\right )} d e - {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2}\right )} e^{2}\right )} c^{2} - 2 \, {\left (\sqrt {b^{2} - 4 \, a c} b c^{3} d^{2} - \sqrt {b^{2} - 4 \, a c} b^{2} c^{2} d e + \sqrt {b^{2} - 4 \, a c} a b c^{2} e^{2}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left | c \right |} + \sqrt {-4 \, c^{2} d + 2 \, {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left (2 \, {\left (b^{2} c^{4} - 2 \, a c^{5}\right )} d^{2} - {\left (3 \, b^{3} c^{3} - 8 \, a b c^{4}\right )} d e + {\left (b^{4} c^{2} - 3 \, a b^{2} c^{3}\right )} e^{2}\right )}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {x e + d}}{\sqrt {-\frac {{\left (2 \, c^{4} d e^{4} - b c^{3} e^{5} + \sqrt {-4 \, {\left (c^{4} d^{2} e^{4} - b c^{3} d e^{5} + a c^{3} e^{6}\right )} c^{4} e^{4} + {\left (2 \, c^{4} d e^{4} - b c^{3} e^{5}\right )}^{2}}\right )} e^{\left (-4\right )}}{c^{4}}}}\right )}{4 \, {\left (\sqrt {b^{2} - 4 \, a c} c^{5} d^{2} - \sqrt {b^{2} - 4 \, a c} b c^{4} d e + \sqrt {b^{2} - 4 \, a c} a c^{4} e^{2}\right )} c^{2}} + \frac {{\left (\sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left ({\left (b^{3} c - 4 \, a b c^{2}\right )} d e - {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2}\right )} e^{2}\right )} c^{2} + 2 \, {\left (\sqrt {b^{2} - 4 \, a c} b c^{3} d^{2} - \sqrt {b^{2} - 4 \, a c} b^{2} c^{2} d e + \sqrt {b^{2} - 4 \, a c} a b c^{2} e^{2}\right )} \sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left | c \right |} + \sqrt {-4 \, c^{2} d + 2 \, {\left (b c - \sqrt {b^{2} - 4 \, a c} c\right )} e} {\left (2 \, {\left (b^{2} c^{4} - 2 \, a c^{5}\right )} d^{2} - {\left (3 \, b^{3} c^{3} - 8 \, a b c^{4}\right )} d e + {\left (b^{4} c^{2} - 3 \, a b^{2} c^{3}\right )} e^{2}\right )}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {x e + d}}{\sqrt {-\frac {{\left (2 \, c^{4} d e^{4} - b c^{3} e^{5} - \sqrt {-4 \, {\left (c^{4} d^{2} e^{4} - b c^{3} d e^{5} + a c^{3} e^{6}\right )} c^{4} e^{4} + {\left (2 \, c^{4} d e^{4} - b c^{3} e^{5}\right )}^{2}}\right )} e^{\left (-4\right )}}{c^{4}}}}\right )}{4 \, {\left (\sqrt {b^{2} - 4 \, a c} c^{5} d^{2} - \sqrt {b^{2} - 4 \, a c} b c^{4} d e + \sqrt {b^{2} - 4 \, a c} a c^{4} e^{2}\right )} c^{2}} + \frac {2 \, {\left ({\left (x e + d\right )}^{\frac {3}{2}} c^{2} e^{2} - 3 \, \sqrt {x e + d} b c e^{3}\right )} e^{\left (-3\right )}}{3 \, c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

-1/4*(sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e)*((b^3*c - 4*a*b*c^2)*d*e - (b^4 - 5*a*b^2*c + 4*a^2*c^2
)*e^2)*c^2 - 2*(sqrt(b^2 - 4*a*c)*b*c^3*d^2 - sqrt(b^2 - 4*a*c)*b^2*c^2*d*e + sqrt(b^2 - 4*a*c)*a*b*c^2*e^2)*s
qrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e)*abs(c) + sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e)*(2*(
b^2*c^4 - 2*a*c^5)*d^2 - (3*b^3*c^3 - 8*a*b*c^4)*d*e + (b^4*c^2 - 3*a*b^2*c^3)*e^2))*arctan(2*sqrt(1/2)*sqrt(x
*e + d)/sqrt(-(2*c^4*d*e^4 - b*c^3*e^5 + sqrt(-4*(c^4*d^2*e^4 - b*c^3*d*e^5 + a*c^3*e^6)*c^4*e^4 + (2*c^4*d*e^
4 - b*c^3*e^5)^2))*e^(-4)/c^4))/((sqrt(b^2 - 4*a*c)*c^5*d^2 - sqrt(b^2 - 4*a*c)*b*c^4*d*e + sqrt(b^2 - 4*a*c)*
a*c^4*e^2)*c^2) + 1/4*(sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*((b^3*c - 4*a*b*c^2)*d*e - (b^4 - 5*a*
b^2*c + 4*a^2*c^2)*e^2)*c^2 + 2*(sqrt(b^2 - 4*a*c)*b*c^3*d^2 - sqrt(b^2 - 4*a*c)*b^2*c^2*d*e + sqrt(b^2 - 4*a*
c)*a*b*c^2*e^2)*sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*abs(c) + sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 -
4*a*c)*c)*e)*(2*(b^2*c^4 - 2*a*c^5)*d^2 - (3*b^3*c^3 - 8*a*b*c^4)*d*e + (b^4*c^2 - 3*a*b^2*c^3)*e^2))*arctan(2
*sqrt(1/2)*sqrt(x*e + d)/sqrt(-(2*c^4*d*e^4 - b*c^3*e^5 - sqrt(-4*(c^4*d^2*e^4 - b*c^3*d*e^5 + a*c^3*e^6)*c^4*
e^4 + (2*c^4*d*e^4 - b*c^3*e^5)^2))*e^(-4)/c^4))/((sqrt(b^2 - 4*a*c)*c^5*d^2 - sqrt(b^2 - 4*a*c)*b*c^4*d*e + s
qrt(b^2 - 4*a*c)*a*c^4*e^2)*c^2) + 2/3*((x*e + d)^(3/2)*c^2*e^2 - 3*sqrt(x*e + d)*b*c*e^3)*e^(-3)/c^3

________________________________________________________________________________________

Mupad [B]
time = 3.91, size = 2500, normalized size = 7.91 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(d + e*x)^(1/2))/(a + b*x + c*x^2),x)

[Out]

(2*(d + e*x)^(3/2))/(3*c*e) - atan(((((8*(a*b^3*c^3*e^4 - 4*a^2*b*c^4*e^4 - b^4*c^3*d*e^3 + b^3*c^4*d^2*e^2 -
4*a*b*c^5*d^2*e^2 + 4*a*b^2*c^4*d*e^3))/c^3 - (8*(d + e*x)^(1/2)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2
)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e
+ 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3
*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2)*(b^3*c^5*e^3 - 2*b^2*c^6*
d*e^2 - 4*a*b*c^6*e^3 + 8*a*c^7*d*e^2))/c^3)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d
 - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20
*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c
- b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) - (8*(d + e*x)^(1/2)*(b^6*e^4 - 2*a^3*c^3*e^4
 + 9*a^2*b^2*c^2*e^4 + 2*a^2*c^4*d^2*e^2 + b^4*c^2*d^2*e^2 - 6*a*b^4*c*e^4 - 2*b^5*c*d*e^3 + 10*a*b^3*c^2*d*e^
3 - 10*a^2*b*c^3*d*e^3 - 4*a*b^2*c^3*d^2*e^2))/c^3)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) -
b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2
*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-
(4*a*c - b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2)*1i - (((8*(a*b^3*c^3*e^4 - 4*a^2*b*c^4
*e^4 - b^4*c^3*d*e^3 + b^3*c^4*d^2*e^2 - 4*a*b*c^5*d^2*e^2 + 4*a*b^2*c^4*d*e^3))/c^3 + (8*(d + e*x)^(1/2)*(-(b
^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*
e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) +
 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b
^2*c^6)))^(1/2)*(b^3*c^5*e^3 - 2*b^2*c^6*d*e^2 - 4*a*b*c^6*e^3 + 8*a*c^7*d*e^2))/c^3)*(-(b^7*e + 8*a^3*c^4*d +
 b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)
^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*
c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) + (8
*(d + e*x)^(1/2)*(b^6*e^4 - 2*a^3*c^3*e^4 + 9*a^2*b^2*c^2*e^4 + 2*a^2*c^4*d^2*e^2 + b^4*c^2*d^2*e^2 - 6*a*b^4*
c*e^4 - 2*b^5*c*d*e^3 + 10*a*b^3*c^2*d*e^3 - 10*a^2*b*c^3*d*e^3 - 4*a*b^2*c^3*d^2*e^2))/c^3)*(-(b^7*e + 8*a^3*
c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c -
b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*
(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/
2)*1i)/((16*(a^4*c*e^5 - a^3*b^2*e^5 + a^2*b^3*d*e^4 + a^3*c^2*d^2*e^3 + a^2*b*c^2*d^3*e^2 - 2*a^2*b^2*c*d^2*e
^3))/c^3 + (((8*(a*b^3*c^3*e^4 - 4*a^2*b*c^4*e^4 - b^4*c^3*d*e^3 + b^3*c^4*d^2*e^2 - 4*a*b*c^5*d^2*e^2 + 4*a*b
^2*c^4*d*e^3))/c^3 - (8*(d + e*x)^(1/2)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18
*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*
b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2
)^3)^(1/2))/(2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2)*(b^3*c^5*e^3 - 2*b^2*c^6*d*e^2 - 4*a*b*c^6*e^3 + 8
*a*c^7*d*e^2))/c^3)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*
a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-
(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(2*(16*a
^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) - (8*(d + e*x)^(1/2)*(b^6*e^4 - 2*a^3*c^3*e^4 + 9*a^2*b^2*c^2*e^4 + 2*
a^2*c^4*d^2*e^2 + b^4*c^2*d^2*e^2 - 6*a*b^4*c*e^4 - 2*b^5*c*d*e^3 + 10*a*b^3*c^2*d*e^3 - 10*a^2*b*c^3*d*e^3 -
4*a*b^2*c^3*d^2*e^2))/c^3)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*
d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3
*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2))/(
2*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) + (((8*(a*b^3*c^3*e^4 - 4*a^2*b*c^4*e^4 - b^4*c^3*d*e^3 + b^3*c
^4*d^2*e^2 - 4*a*b*c^5*d^2*e^2 + 4*a*b^2*c^4*d*e^3))/c^3 + (8*(d + e*x)^(1/2)*(-(b^7*e + 8*a^3*c^4*d + b^4*e*(
-(4*a*c - b^2)^3)^(1/2) - b^6*c*d - 18*a^2*b^2*c^3*d + 25*a^2*b^3*c^2*e + a^2*c^2*e*(-(4*a*c - b^2)^3)^(1/2) -
 9*a*b^5*c*e + 8*a*b^4*c^2*d - 20*a^3*b*c^3*e - b^3*c*d*(-(4*a*c - b^2)^3)^(1/2) + 2*a*b*c^2*d*(-(4*a*c - b^2)
^3)^(1/2) - 3*a*b^2*c*e*(-(4*a*c - b^2)^3)^(1/2...

________________________________________________________________________________________